testo 6651 · Humidity transmitters

testo 6600 · Probes

P2A software · Parameterizing, adjusting and analyzing software

Instruction manual Volume 1
Safety and the environment

Avoiding electrical hazards
► Never use the instrument and connected probes to measure on or near live parts!
► Damaged mains cables must only be replaced by authorized personnel.
► Only have the transmitter wired and connected by authorized personnel with the voltage disconnected.
► You must always comply with the regulations applicable in your country to the opening and repair of electrical equipment.

Avoiding personal injury/damage to equipment
► Installation, setting and calibration work must only be carried out by qualified and authorized personnel!
► Only open the instrument when this is expressly described in the instruction manual for installation, maintenance or repair purposes.
► Observe the permissible storage, transport and operating temperatures.
► Never store or operate the product with solvents and do not use any desiccants.
► Do not use the instrument for control purposes at the same time as operating or servicing the transmitter.
► Only operate the product properly, for its intended purpose and within the parameters specified in the technical data. Do not use force.
► Carry out only the maintenance and repair work that is described in the documentation. Follow the prescribed steps when doing so. Use only OEM spare parts from Testo.

Any additional work must only be carried out by authorized personnel. Otherwise Testo will not accept any responsibility for the proper functioning of the instrument after repair and for the validity of certifications.

Protecting the environment
► Send the product back to Testo at the end of its useful life. We will ensure that it is disposed of in an environmentally friendly manner.
About this document

► Please read this documentation through carefully and familiarize yourself with the product before putting it to use. Keep this document to hand so that you can refer to it when necessary. Hand this documentation on to any subsequent users of the product.

► The following conventions are followed in this document:

<table>
<thead>
<tr>
<th>Character/diplay:</th>
<th>Explanation/example</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>With the signal word Warning!: Warns against hazards which could result in serious physical injury if the precautionary measures indicated are not taken, e.g.: De-energize the mains connection before connecting the transmitter!</td>
</tr>
<tr>
<td>✗</td>
<td>With the signal word Caution!: Warns against hazards which could result in minor physical injury or damage to equipment if the precautionary measures indicated are not taken, e.g.: Observe the permissible operating temperature!</td>
</tr>
<tr>
<td>✂</td>
<td>Important information, e.g.: Administrator rights are required to install the program under Windows® 2000, XP and Vista.</td>
</tr>
<tr>
<td>▶</td>
<td>Aim of action, e.g.: ▶ Assembling the instrument at the process connection:</td>
</tr>
<tr>
<td>✓</td>
<td>Requirement that must be met, e.g.: ✓ USB drivers are installed.</td>
</tr>
</tbody>
</table>
Steps are numbered if a certain sequence of actions must be followed, e.g.:

1. Loosen and remove housing screws.
2. Remove the upper part of housing.

A step is not numbered if there are no further steps or if the step is optional, e.g.:

- Insert probe connector into socket of testo 6651 until it engages.

"..." Example entries are in inverted commas, e.g.:

The value "0" results in

Bold type Elements of the program interface or instrument display, e.g.:

The instrument designation appears in the instrument/parameter file list.

Select **Main Menu Channel 1** and confirm with SET.

...>... Functions/paths within a menu, e.g.:

Start > All Programmes > Testo > Transmitter Software.

[] Buttons which start an action, e.g.:

Confirm the software key with [OK].

CAPITAL LETTERS Keys on the instrument or keypad, e.g.:

Press ESC.
Contents

1 TRANSMITTER ... 6

1.1 Specifications ... 6
 1.1.1 Functions and use ... 6
 1.1.2 Scope of delivery .. 6
 1.1.3 Accessories ... 7
 1.1.4 Technical data .. 7
 1.1.5 Dimensions ... 9

1.2 Product description .. 10
 1.2.1 At a glance ... 10
 1.2.2 Usable probes .. 11
 1.2.3 Display and keypad ... 11
 1.2.4 Service interface .. 12
 1.2.5 Relay board (option) .. 12
 1.2.6 Analog outputs ... 12
 1.2.7 Parameters .. 13
 1.2.8 Scaling ... 13
 1.2.9 Alarm handling ... 15

1.3 Commissioning .. 16
 1.3.1 Assembling the instrument ... 16
 1.3.2 Connecting the instrument ... 20
 1.3.3 Adjusting the instrument ... 31

1.4 Operation .. 37
 1.4.1 Relationship between user menu and mini-DIN socket is active 37
 1.4.2 Key cover .. 38
 1.4.3 Password protection ... 38
 1.4.4 Structure of user menu .. 39
 1.4.5 Overview of the testo 6651 user menu ... 40
 1.4.6 The individual main menus .. 42

1.5 Status, warning and error messages ... 53
 1.5.1 Transmitter status messages .. 53
 1.5.2 Transmitter warning messages ... 54
 1.5.3 Transmitter error messages .. 56
 1.5.4 Handling alarm messages ... 57
 1.5.5 Namur fault conditions .. 58

1.6 Maintenance and cleaning ... 59
 1.6.1 Maintaining the instrument ... 59
 1.6.2 Cleaning the instrument .. 59
1 Transmitter

1.1 Specifications

1.1.1 Functions and use

The testo 6651 humidity transmitter is used in conjunction with plug-in, adjusted probes from the testo 6600 range.

Please refer to *volume 2, chapter 2, page 64* for information about commissioning, operating and maintaining the testo 6600 probe.

The testo 6651 humidity transmitter is suitable for the following applications, for example:

- Process instrumentation
- Test benches
- Production and storage air quality
- Complex room climate applications

1.1.2 Scope of delivery

The scope of delivery of the testo 6651 humidity transmitter includes the following:

- Key cover
- Rear panel bracket
- CD-ROM with catalogue files (PDF) and P2A update (this can only be used in conjunction with the P2A software, which has to be ordered separately).
1.1.3 Accessories

The following accessories are available for the testo 6651 humidity transmitter:

- Protection caps for probes
- Mains unit
- P2A software (parameterizing, adjusting and analyzing software)
- Assembly accessories.

Information about accessories and their order numbers can be found in volume 2, chapter 4.2, page 121 or on the website at www.testo.com.

1.1.4 Technical data

Parameters
- Humidity (% RH/°Ctd/°Ftd)
- Temperature (°C/°F)

Measuring range
- Depends on probe

Accuracy
- Depends on probe

Resolution
- 0.1 % RH or 0.1 °C/0.1 °F

Meas. cycle
- 1/s

Interface
- Mini-DIN for P2A software (parameterizing and adjusting software) and handheld testo 400/650

Voltage supply
- 2-wire: 18 ... 24 V DC ± 10%
- 4-wire (separate signal and supply lines):
 - 20 - 30 V AC/DC,
 - 300 mA power consumption

Maximum load
- 2-wire: 100 to 750 Ω
- 4-wire: 500 Ω (power output)
Analog output
- 4 ... 20 mA ± 0.03 mA (2-wire) or
- 0 ... 1 V ± 1.5 mV (4-wire) or
- 0 ... 5 V ± 7.5 mV (4-wire) or
- 0 ... 10 V ± 15 mV (4-wire) or
- 0 ... 20 mA ± 0.03 mA (4-wire) or
- 4 ... 20 mA ± 0.03 mA (4-wire)

Resolution of analog output
- 12 bit

Relay
- 4 relays, 250 V AC/DC, 3 A (optional)

Display
- 2-line LCD with plain text line (optional)

Housing operating temperature
- -40 ... 70 °C/-40 to +158 °F, with display from 0 - 50 °C / 32 to +122 °F

Storage temperature
- -40 ... 80 °C/-40 to +176 °F

Housing, weight
- Plastic, 675 g/1.49 lb

Protection class
- IP 65 only if the transmitter is wired and/or seal plugs are inserted

Directives, standards and tests

Warranty
- Duration: 2 years
- Warranty conditions: See web page www.testo.com/warranty
1.1.5 Dimensions

<table>
<thead>
<tr>
<th>Dimensions in mm</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>With M 20 cable couplings</td>
<td>144</td>
<td>147</td>
</tr>
<tr>
<td>With NPT cable couplings</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>With plug-in connections</td>
<td>143</td>
<td></td>
</tr>
</tbody>
</table>
1.2 Product description

1.2.1 At a glance

1. Keys (with optional display)
2. Service flap screw connection (self-locking, 2x)
3. Display (optional)
4. Service flap
5. M 16 x 1.5 screw connection*, e.g. analog outputs
6. M 16 x 1.5 screw connection*, e.g. voltage supply
7. M 20 x 1.5 screw connection*, e.g. relay R 3 and R 4
8. Eyelet for measuring point panel
9. M 20 x 1.5 screw connection*, e.g. relay R 1 and R 2
10. Probe connector (testo 6600)
11. Upper part of housing
12. Housing screws (M4 x 20 mm)
13. Socket for probe connector

* Alternatively, NPT cable couplings or M plug-in connections are available
1.2.2 Usable probes

The testo 6651 humidity transmitter can be used with the following probes:

<table>
<thead>
<tr>
<th>probe</th>
<th>Article no.</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>testo 6601</td>
<td>0555 6600-L01</td>
<td>Wall probe version; accuracy to ± 1.7 % RH; temperature range -20 °C to +70 °C/-4 to +158 °F, Sensor plugged</td>
</tr>
<tr>
<td>testo 6602</td>
<td>0555 6600-L02</td>
<td>Duct probe version; accuracy to ± 1.7 % RH; temperature range -20 °C to +70 °C/-4 to +158 °F, Sensor plugged</td>
</tr>
<tr>
<td>testo 6603</td>
<td>0555 6600-L03</td>
<td>Duct probe version; accuracy to ± 1.7 % RH; temperature range -30 °C to +120°C/-22 to +248 °F, Sensor plugged</td>
</tr>
<tr>
<td>testo 6604</td>
<td>0555 6600-L04</td>
<td>Cable probe version; accuracy to ± 1.7 % RH; temperature range -20 °C to +70 °C/-4 to +158 °F, Sensor plugged</td>
</tr>
<tr>
<td>testo 6605</td>
<td>0555 6600-L05</td>
<td>Cable probe version; accuracy to ± 1.7 % RH; temperature range -30 °C to +120°C/-22 to +248 °F, Sensor plugged</td>
</tr>
</tbody>
</table>

1.2.3 Display and keypad

The display option allows the testo 6651 humidity transmitter to be operated via the display and four keys.

The LCD display consists of two 7-segment lines for displaying readings and units and of an information line (for status messages, for example).
The brightness and contrast of the display and the background lighting (permanent or off) can be changed via the user menu or the P2A software.

1.2.4 Service interface

Behind the service flap is the parameterizing socket (mini-DIN) as an interface to the P2A software or Testo handheld instrument (testo 400/testo 650).

1.2.5 Relay board (option)

This has a floating switch capacity of 250 V AC/3 A. The switching limits and hysteresis as well as the function as relay for the collective alarm can be set via the display or the P2A software. Further features include:

- Function of changeover contacts (NC/NO contacts) freely selectable
- 12 terminals for a total of 4 relays.

If no relays are available, settings for monitoring limit values or alarms can still be controlled via the display.

Only have the transmitter wired and connected by authorized personnel with the voltage disconnected.

1.2.6 Analog outputs

For analog outputs, the testo 6651 has either

- 2 current outputs of 4 to 20 mA (2-wire)/0 to 20 mA (4-wire)/4 to 20 mA (4-wire) or
- 2 voltage outputs of 0 to 1 V/0 to 5 V/0 to 10 V (4-wire).

In 2-wire operation, channel 1 is used for the supply. The two channels are galvanically isolated in both 2- and 4-wire operation.

The relay option and the background lighting of the optional display are only possible in 4-wire operation.
1.2.7 Parameters

The following parameters are calculated:

- Relative humidity in % RH and (technical)
- Relative humidity in % WMO* (calculation according to the WMO standard)
- Temperature °C and °F
- Dewpoint in °Ctd and °Ftd.
- Absolute humidity in g/m³

*It is possible that condensation appears as of a displayed humidity starting from 70 % and is shown on the display. This unit is used in meteorology, for example. According to the WMO, the Magnus coefficient is used for sub-cooled water in the calculation of relative humidity.

Calculated humidity variables correspond to the medium of air. With other gases/gas compositions, deviations may occur, e.g. with the enthalpy

1.2.8 Scaling

There are three types of min./max. values:

1. The measuring range
 The maximum sensor performance is in this range. Values outside of the measuring range are displayed via messages, for example. Measuring range, see table (below).

2. Standard scaling
 The output signals are assigned to this measuring range as standard:
 - during delivery if no entries are made in the order code
 - after exchanging the unit, the measuring range recorded in the instrument is applied as standard.

 The transmitter even retains its scaling with the voltage disconnected.
Measuring range, see table (below).

3 The maximum settings for the manual scaling

- the values are not expressly given in the table. The maximum limits can be calculated as follows:
 \[X = \text{difference between MIN. and MAX. value of the standard scaling} \]
 \[(\text{Max. value of standard}) + (50 \% \text{ of } X)\]
 \[(\text{Min. value of standard}) - (50 \% \text{ of } X)\]

- It is thus possible to scale beyond the measuring range, e.g. for the adjustment of the scaling limits to standard values of a PLC.
 However, the physical measurement range limits are the deciding factor when defining alarms.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>probe</th>
<th>Measuring range physical at 1013 hPa</th>
<th>Standard scaling MUF measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>6601, 6602, 6604</td>
<td>-20</td>
<td>+70</td>
</tr>
<tr>
<td></td>
<td>°F</td>
<td>6601, 6602, 6604</td>
<td>-4</td>
<td>+158</td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td>6603, 6605</td>
<td>-30</td>
<td>+120</td>
</tr>
<tr>
<td></td>
<td>°F</td>
<td>6603, 6605</td>
<td>-22</td>
<td>+248</td>
</tr>
<tr>
<td>relative humidity</td>
<td>% RH</td>
<td></td>
<td>0</td>
<td>+100</td>
</tr>
<tr>
<td>WMO relative humidity</td>
<td>% RH</td>
<td></td>
<td>0</td>
<td>+100</td>
</tr>
<tr>
<td>Dewpoint at 25 °C Tmax</td>
<td>°Ctd</td>
<td>6601, 6602, 6604</td>
<td>-20</td>
<td>+70</td>
</tr>
<tr>
<td></td>
<td>°Ftd</td>
<td>6601, 6602, 6604</td>
<td>-4</td>
<td>+158</td>
</tr>
<tr>
<td></td>
<td>°Ctd</td>
<td>6603, 6605</td>
<td>-20</td>
<td>+100</td>
</tr>
<tr>
<td></td>
<td>°Ftd</td>
<td>6603, 6605</td>
<td>-4</td>
<td>+212</td>
</tr>
<tr>
<td>Absolute humidity</td>
<td>g/m3</td>
<td>all probes</td>
<td>0</td>
<td>600</td>
</tr>
</tbody>
</table>
1.2.9 Alarm handling

For upper and lower alarm limits, individual alarms as well as collective alarms can be specified. If the collective alarm function is activated, an alarm is triggered as soon as the alarm limit of an alarm is exceeded, if this alarm is assigned to the collective alarm.

The testo 6651 monitors limit values using relays. If a reading is outside the limit values, a relay to be specified by the user is switched.

If the reading reverts to more than a specified hysteresis below or above the limit value, the alarm is cancelled.

In addition, information about the occurrence of error/status messages can be provided by means of a collective alarm relay (see chapter 1.5, page 53).

If multiple alarm messages are activated at the same time, the last alarm is shown. If the alarm is cancelled again, the previous messages are no longer shown.

Example

If the condensation of the probe begins, the "Condensation" message appears on the display and the "Start" status display. If the condensation is over, the status display changes from "Start" to "End".
1.3 Commissioning

1.3.1 Assembling the instrument

1.3.1.1 Wall mounting (for testo 6601/6604/6605 probes)

- Attaching rear panel bracket

1. Remove locking screw (item (4) of drawing on page 17) and detach rear panel bracket from plastic bracket (item (2) of drawing on page 17).

2. Hold rear panel bracket in assembly position and mark the three drill holes.

3. Drill three holes (Ø 5 mm) and insert dowels where necessary.

4. Screw on rear panel bracket.
 Remember that the clamping brackets (1) must face the wall.
Fastening instrument to rear panel bracket

1. Slide plastic bracket (2) on the back of instrument onto rear panel bracket until it engages (see arrows).
2. Insert screw (4) through hole (3) and screw into rear panel bracket.
3. Insert probe connector (5) into socket until it engages.
1.3.1.2 Duct mounting (for testo 6602/6603 probes)

1. Hold wall/duct bracket (order no. 0554 6651) (6) against duct wall (8) and mark drill holes for wall/duct bracket and probe shaft.

2. Drill a hole (Ø 12.5 mm) in the duct wall to feed through the probe shaft.

3. Fasten wall/duct bracket (6) to duct wall with screws (5).

4. Push probe shaft (9) with filter (10) through the middle hole of the mounting bracket.

The wall/duct bracket (6) has an O-ring (7) to seal it against the duct. Feed the probe shaft (9) carefully through the wall/duct bracket so that the O-ring is not damaged.

5. Fix the correct position of the probe shaft (8) with screw (11) and mark (insert probe shaft as far as possible).

6. Slide plastic bracket (2) on the back of the transmitter onto bracket (3, 4) until it engages.
Take the weight of the transmitter into account. Ensure that the brackets (4, 6) are fastened securely.

7 Insert screw (1) through hole on the top of the instrument and screw into bracket (3).

8 Insert probe connector (12) into socket until it engages.
1.3.2 Connecting the instrument

- Opening the instrument

1. Loosen screw connection (1) of service flap and open the flap.

2. Loosen and remove housing screws (2).

3. Remove upper part of housing from lower part (3) and place on a clean surface.
Warning!

Electrical voltage.

Danger of injury!
De-energize the mains connection before connecting the transmitter!

Only have the transmitter wired and connected by authorized personnel with the voltage disconnected.

1.3.2.1 Overview of terminals

1. Lower part of housing
2. Relay board (option)
3. Relay terminals
4. Insulating trough for relay board
5. Terminal strip for voltage supply and analog outputs
6. Terminal board
7. M 16 x 1.5 screw connection*
8. Eyelet for measuring point panel
9. M 20 x 1.5 screw connection*

* Alternatively, NPT cable coupling or M plug-in connection
The following description of the terminals refer to this overview and its numbering.

1.3.2.2 Connecting voltage supply and analog outputs

![Terminal strip](image)

Terminal strip for voltage supply and analog outputs (item (5) of Overview of terminals, *chapter 1.3.2.1, page 21*).

1. Feed cable with voltage supply and analog signal lines through opened M 16 x 1.5 screw connection (item (7) in Overview of terminals, *chapter 1.3.2.1, page 21*).

2. Strip the cable ends, clamp wire end ferrules on and screw down onto voltage terminals.

3. Close M 16 x 1.5 screw connection (item (7) in Overview of terminals, *chapter 1.3.2.1, page 21*).
Wiring diagram for 2-wire system (4 - 20 mA)

18 to 24 VDC

0 V

2 channels
4 to 20 mA, max. load 100 to 750 Ω (at 24 V)

If the channels have to be galvanically isolated, a separate mains unit must be used for each channel.
Wiring diagram for 4-wire system
(0 to 20 mA/4 to 20 mA/0 to 1 V/0 to 5 V/0 to 10 V)

The channel 3 shown on the circuit board cannot be used with this instrument.

Requirement for the connecting cable of the supply:
- Insulated with cross-section of at least 0.25 sq. mm.
- The supply line must be secured against exceeding 8 A.
- An OFF switch must be installed in an easily accessible position close by and be marked as such.

1. Feed connection cables of the two channels through opened M 16 x 1.5 screw connection (item (7) of Overview of terminals, chapter 1.3.2.1, page 21).
2. Strip the cable ends, clamp wire end ferrules on and screw to channel terminals as shown in diagram.
3. Close M 16 x 1.5 screw connection (item (7) in Overview of terminals, chapter 1.3.2.1, page 21).
1.3.2.3 Connecting the relay outputs

Only have the transmitter wired and connected by authorized personnel with the voltage disconnected.

There is the option of twelve terminals for a total of four relays. The designations NC/C/NO (normally closed contact/root or pin/normally open contact) are etched on the surface of the board.

Using PG screw connection

4 Feed connection cables for the relays through opened M 20 x 1.5 screw connection (item (10) of Overview of terminals, chapter 1.3.2.1, page 21).

5 Strip cable ends and clamp on wire end ferrules.

6 Connect relays according to chosen function (NC/NO) (see diagrams below; relay 1 is shown as an example of a connection).

Using plug-in connections (optional)

Only insert or disconnect the plug-in connection when the voltage is disconnected.

1 Clean the connector of the probe line and the coupling of any foreign matter.

Do not disconnect the connector of the probe line from the instrument for extended periods to protect against contamination.
For the connection, a double-insulated mains cable (sheathed cable) with a cross-section of at least 1.5 sq. mm must be used.

- Cable connection (2) may not be routed in a loop within the tray (1).
- It is recommended that you always tie 3 cores to one another using a cable tie (3).
- The insulation of the cable must be fed at least 5 mm (4) into the tray.
Use of relay as NC contact (NC = normally closed)

The busy light (alarm/status light) is permanently on until the relay opens or the circuit is interrupted. This circuit can therefore be used to monitor the functionality of the alarm circuit, as a cable break, for instance, is indicated by the busy light going off.

Use of relay as NO contact (NO = normally open)

The busy light (alarm/status light) is permanently on until the relay opens or the circuit is interrupted. This circuit can therefore be used to monitor the functionality of the alarm circuit, as a cable break, for instance, is indicated by the busy light going off.
The busy light (alarm/status light) only comes on when the relay is switched (closed). Monitoring the functionality of the alarm circuit is therefore not possible with this switching operation.

2 Close M 20 x 1.5 screw connection (item (9) of Overview of terminals, chapter 1.3.2.1, page 21).

1.3.2.4 Plug-in connection option
As an option, the PG screw connections of the signal and supply lines can be replaced with plug-in connections that are installed at the housing (see Fig. 1 and 2). The relay cabling occurs via standard cable entries and PG screw connections, see Fig. 3 and 4.
Plug-in connections for power supply and channels

M12 plug-in connection (5-pin) socket (1)

View of the plug-in connections in the installed state from outside

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V 24 -</td>
</tr>
<tr>
<td>2</td>
<td>V 24 +</td>
</tr>
<tr>
<td>3</td>
<td>+ Ch 1</td>
</tr>
<tr>
<td>4</td>
<td>- Ch 1</td>
</tr>
<tr>
<td>5</td>
<td>PE</td>
</tr>
</tbody>
</table>

M12 plug-in connection (5-pin) connector (2)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- Ch 2</td>
</tr>
<tr>
<td>2</td>
<td>+ Ch 2</td>
</tr>
<tr>
<td>3</td>
<td>+ Ch 3</td>
</tr>
<tr>
<td>4</td>
<td>- Ch 3</td>
</tr>
<tr>
<td>5</td>
<td>PE</td>
</tr>
</tbody>
</table>
1.3.2.5 Closing the instrument

1. Place upper part of instrument on top of lower part (see arrow) and fix in place with housing screws (1).

2. Close the service flap and tighten screws (2).
1.3.3 Adjusting the instrument

The testo adjusting concept allows the entire signal chain from the sensor signal (probe) and the digital signal (within the transmitter) through to the analog signal (transmitter output signal) to be adjusted (see diagram).

<table>
<thead>
<tr>
<th>1-point adjustment</th>
<th>2-point adjustment</th>
<th>Analog adjustment</th>
</tr>
</thead>
</table>

Adjustment via
- testo 400/650 handheld instrument with adjustment adapter
- P2A software
- User menu

Adjustment 11.3 % RH and 75.3 % RH via
- Adjustment keys (1, 2)
- P2A software

Adjustment 20 % rH and 80 % rH via
- User menu

Adjustment using a precise multimeter and transmission of analog reference value in
- P2A software or
- User menu

Either the 1-point adjustment or 2-point adjustment is suitable for adjusting the sensor signal - digital signal chain.

The testo 6651 transmitter has digital probes whose adjustment information is stored in the probe's internal memory. Both 1-point and 2-point adjustments can thus be carried out on another testo 6651 (e.g. in the calibration laboratory).
1.3.3.1 Overview: Adjustment keys and test contacts

1 LED
2 Contact ch. 1 +
3 Contact ch. 1 -
4 Adjust key 11.3 %
5 Service interface
6 Adjust key 75.3 %
7 Contact ch. 2 +
8 Contact ch. 2 -

1.3.3.2 1-point adjustment (offset)

In the 1-point adjustment, the reading at the working point is raised to the reference value so that there is no longer any deviation in the working point. The reference condition can be measured using a precise handheld instrument (e.g. testo 400/650 with precision humidity probe) or be created in an air conditioning cabinet.

The advantage of the 1-point adjustment is the good measuring result in the working range. But the further away the measurement is from the working point, the greater the deviation can become. The 1-point adjustment should therefore only be used for a relatively narrow measuring range (working range), e.g. clean room applications, air conditioning applications for storage and similar.
The 1-point adjustment can be performed

- via the user menu (see chapter 1.4.6.8, page 49) or
- via the P2A software (see volume 2, Chapter 3, page 89) or
- directly by means of a Testo handheld instrument (testo 400/650) (see description of how to proceed below).

Please note that the 1-point adjustment is generally performed on the basis of the % RH and °C/°F parameters.

Adjusting testo 6651 using Testo handheld instrument

✓ The service flap is open, a testo 400/650 handheld instrument with a precision humidity probe is ready.

1. Connect Testo handheld instrument 400/650 (1) with connected humidity reference probe (3) (order no. reference set 0699 3656/20) to the service interface (5) of the testo 6651 via the adjustment adapter (2) (connected to the probe socket 1 of the handheld instrument).
2 Expose the humidity probe (4) of the testo 6651 and the reference probe (3) to the same reference conditions (e.g. in the humidity generator) and allow climatic conditions to equalize.

3 Switch on the testo 400/650. The two-part display of the handheld instrument will show the values of the transmitter on the left, and the values of the reference probe on the right. The humidity and temperature values are adjusted to the reference probe using the **Probe > Probe Adjustment** menu item on the testo 400/650.

 The 1-point adjustment is performed for both the humidity and the temperature.

4 Disconnect the adapter (2) from the service interface (5).

5 Close the service flap.

1.3.3.3 2-point adjustment

With the 2-point adjustment, the parameter is adjusted to the reference value at the two standard adjustment points 11.3 % RH and 75.3 % RH or 20 % RH and 80 % RH. The reference conditions are created either by using Testo humidity adjustment set (order no. 0554 0660, only for adjustment points 11.3 %RH and 75.3 %RH) or in the humidity generator.

In the 2-point adjustment, the deviations between the reading and the nominal value are minimized across the entire measuring range. The 2-point adjustment is therefore recommended for large working ranges, e.g. in drying processes.

The 2-point adjustment can be performed for the adjustment points 11.3 %RH and 75.3 %RH

- via P2A software (see *volume 2, chapter 3, page 89*) or
- using the adjustment keys under the service flap, see description of how to proceed below.

The 2-point adjustment for the adjustment points 20 %RH and 80 %RH is carried out via the user menu.
A 2-point adjustment cancels any previous 1-point adjustment.

Adjusting testo 6651 using adjustment keys

The 2-point adjustment for the adjustment points 20 %RH and 80 %RH is carried out via the user menu.

The service flap of the testo 6651 is open.

1. Expose the humidity probe of the testo 6651 to the reference condition of 11.3 %RH for at least 1.5 hours at 25 °C.
2 After this equalization period, press the 11.3 % adjustment key (4) for at least 10 seconds with something like a ball-point pen that is not too sharp. The LED (1) flashes when the adjustment process begins. At the same time, the **2-point adjustment 11.3 %** status message appears on the display.

Completion of the adjustment is signalled by the LED (1) coming on permanently and the **Probe reset** status message is shown.

- Carry out the adjustment analogously for the reference condition 75.3 % RH. Press on the 75.3 % RH adjustment key (6) to do this.

3 Close the service flap.

1.3.3.4 Analog output adjustment

The purpose of adjusting the analog outputs is to adjust the signal chain from the digital signal (within the transmitter) to the analog outputs. The signal type that was appointed for the transmitter is adjusted respectively for each channel (e.g. 4 to 20 mA or 0 to 1 V, etc.).
Adjust analog outputs

- A precise multimeter (minimum resolution of 6.5 digits, accuracy of 100 μA, e.g. Agilent 34401A) is available.

If only a simple multimeter is available, the analog outputs may not be adjusted.

- The service flap is open.

1. Connect the inputs of the multimeter with the contacts (2) and (3) for channel 1 or with contacts (7) and (8) for channel 2.

2. Transfer the reference analog value measured with the multimeter to the P2A software (see volume 2, chapter 3, page 89) or enter it via the user menu (see chapter 1.4.6.8, page 49).

3. Disconnect connections between multimeter and contacts of the testo 6651 and close service flap.

1.4 Operation

1.4.1 Relationship between user menu and mini-DIN socket is active

The testo 6651 can be parameterized using either the user menu or the P2A software (see volume 2, chapter 3, page 89).

The testo 6651 humidity transmitter can only be operated via the display and keypad if the display option is available.

If the testo 6651 is connected to the P2A software, the user menu is blocked for the duration of the communication. The message Service plug is shown in the display of the testo 6651. As soon as the P2A software is disconnected, the user menu is accessible again.
1.4.2 Key cover

To prevent unauthorized operation of the keys, the standard key frame can be replaced with a key cover.

If the key cover has been assembled, the service flap must be opened for operation (see Section Opening the instrument, chapter 1.3.2, page 20).

- Attaching the key cover

 ✓ The service flap is open (see Section Opening the instrument, chapter 1.3.2, page 20).

1. Undo screws (3) and remove key frame (2).
2. Insert key cover (1) into service flap and tighten screws (3).
3. Close and screw down the service flap.

1.4.3 Password protection

The user menu can be protected with a four-digit numerical code (see chapter 1.4.6.4, page 44) so that access to the user menu is denied to unauthorized persons not familiar with this numerical code.

If the password protection is not to be used, the numerical code "0000" must be entered. This is also the status upon delivery.
1.4.4 Structure of user menu

At the main menu level, the user menu comprises the following:

- Main menu of channel 1
- Main menu of channel 2
- Main Menu Alarm
- Editing Settings main menu
- Analysis main menu
- Status main menu
- Ident main menu
- Adjustment main menu
- Reset main menu

Four keys enable the user to navigate/scroll through the menus and enter/amend values and settings:

<table>
<thead>
<tr>
<th>Key</th>
<th>Function/description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET</td>
<td>- In Measuring Mode: changes to parameterization</td>
</tr>
<tr>
<td></td>
<td>- In Parameterizing Mode: confirms a selection or setting</td>
</tr>
<tr>
<td>ESC</td>
<td>- Leaves a menu (without modifying any settings)</td>
</tr>
<tr>
<td>►</td>
<td>- Selecting: scrolls through menus (downwards) or selectable alternatives</td>
</tr>
<tr>
<td></td>
<td>- Editing: changes to next digit (to the right)</td>
</tr>
<tr>
<td>▲</td>
<td>- Selecting: scrolls through menus (upwards) or selectable alternatives</td>
</tr>
<tr>
<td></td>
<td>- Editing: increases the value of the current digit by 1</td>
</tr>
</tbody>
</table>
1.4.5 Overview of the testo 6651 user menu

Password (enter where necessary)

Measuring

Channel 1

Change Unit

Selection

Min scale Channel 1

Editing

Max scale Channel 1

Editing

Ion Channel 1

Selection

Channel 2

See channel 1

Alarm

Alarm 1

Not used

Alarm relay

Channel 1

Min control

Limit value

Edit

Hysteresis

Edit

Max control

See Min control

Channel 2

See channel 1

Alarm 2

See alarm 1

Alarm 3

See alarm 1

Alarm 4

See alarm 1

Settings

Display Setting

Light

Selection

Contrast

Selection

Lights On 24 h

Selection

Language

Selection

Code

Edit

Editing

Changes to next digit

+1 (increases value of current digit by 1)

Selection

 Scrolls through alternatives

< ... >

Refers to SET key

Refers to ESC key

Means: read-only

No entry possible
1.4.6 The individual main menus

1.4.6.1 Editing Main Menu Channel 1

An overview is given in Overview of the testo 6651 user menu (see chapter 1.4.5, page 40).

You can perform basic settings for channel 1.

1. In Measuring Mode, press SET, select **Main Menu Channel 1** using ▶ or ▲ and confirm selection with SET.

 One of the following parameters can now be selected using ▶ or ▲, after which the selection must be confirmed with SET:

 - **Channel 1 unit**
 The parameter for this channel is selected.
 Selection: % RH, °C, °F, °Ctd, °Ftd, g/m³.
 Edit/select parameter with ▶ or ▲, confirm with SET or abort input with ESC.

 - **Scale minimum for channel 1**
 The lower scale limit is edited;
 Unit as selected above (example: 4 mA = 0 % RH).
 Editing the value: Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

 - **Scale maximum for channel 1**
 The upper scale limit is edited;
 Unit as selected above (example: 20 mA = 100 % RH).
 Editing the value: Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

 - **Signal delay ("Damping") for channel 1**
 The analog signal can be delayed ("Damping"); a time constant is selected for this (1 = no delay; 15 = longest delay).
 Edit/select parameter using ▶ or ▲, confirm with SET or cancel entry via ESC.

2. Continue to **Main Menu Channel 2** using ▶ or ▲ or return to Measuring Mode by pressing ESC.

1.4.6.2 Editing main menu of channel 2

See channel 1.
1.4.6.3 Editing Main Menu Alarm

With the alarm, the relays, available as options, are programmed. In addition, the alarm statuses are shown on the display (top right) (even without relays). You can choose whether the alarm is used to monitor limit values or as a collective alarm. If an alarm is to be used to monitor limit values, you can choose between monitoring the minimum or maximum value and set a limit value and hysteresis for each alarm.

3 In Measuring Mode, press SET, select Main Menu Alarm using ▶ or ▲ and confirm selection with SET.

Four alarms can be parameterized.

4 Select Alarm x using ▶ or ▲ and confirm selection with SET.

- Using alarm to monitor limit values

5 Select Channel x (e.g. "Channel 1") using ▶ or ▲ and confirm selection with SET.

6 Select Max control or Min control with ▶ or ▲ (see graphic).

7 Press SET and edit limit value and hysteresis: Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

8 Return to Channel x by pressing ESC.

9 Return to Alarm x by pressing ESC.

10 Change to the other relays using ▶ or ▲ and perform settings in the same way.
1.4 Operation

- Using alarm as collective alarm or not using it at all

If the collective alarm is assigned to an alarm, the relay is switched as soon as (at least) one of the warning or error messages of the testo 6681 transmitter (or the connected testo 6610 probe) is activated.

Note:
The messages affecting the collective alarm can be selected in the P2A software (see volume 2, chapter 3, page 89).

✓ Alarm is selected (see previous steps 1 and 2).

1 Specify with ▶ or ▼ whether Alarm x is to be used as the Alarm relay or is not to be used. Confirm selection with SET and return to Alarm x.

2 Change to another alarm using ▶ or ▼ and perform settings in the same way.

3 Continue to Main Menu Settings using ▶ or ▼ or return to Measuring Mode by pressing ESC.

1.4.6.4 Editing Main Menu Settings

You can edit instrument settings and other settings.

- In Measuring Mode, press SET, select Main Menu Settings using ▶ or ▼ and confirm selection with SET.

You can edit settings for:

- Display
- Language
- Code.

- Editing display settings

You can set the brightness and contrast of the display.

1 Select Display Settings using ▶ or ▼ and confirm selection with SET.

2 Select Backlight, Contrast or Backlight on 24 h using ▶ or ▼ and confirm selection using SET.

One of the following parameters can now be selected using ▶ or ▼, after which the selection must be confirmed with SET:
- **Backlight**
 The display illumination is changed.
 Edit/select parameter with ▼ or ▲, confirm with SET or cancel entry with ESC (the effect of the change in parameter can be seen during input).

- **Contrast**
 The brightness difference between the display background and the displayed values is changed.
 Edit/select parameter with ▼ or ▲, confirm with SET or cancel entry with ESC (the effect of the change in parameter can be seen during input).

- **Backlight on 24 h**
 Using ▼ or ▲ select On or Off and confirm with SET.
 Off: The display light switches off automatically if no button was pressed for 30 seconds.
 On: The display light is activated

3 Go back to **Display Settings** by pressing ESC and continue to **Language** using ▼ or ▲.

➢ **Selecting language**

You can select the language for the plain text line in the display.

- Press SET, select required language with ▼ or ▲, confirm selection with SET and return to **Language**.

 Only choose a language that you can understand well.
Editing code settings

You can set the access code (password).

If a code other than "0000" (factory setting) is set, the transmitter can only be operated once this code has been entered via the menu.

1. Select **Code** using ▶ or ▲ and confirm selection with SET.
2. Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.
3. Continue to **Main Menu Analysis** using ▶ or ▲ or return to Measuring Mode by pressing ESC.

1.4.6.5 Editing Analysis main menu

You can test the functionality of analog and relay outputs. In addition, you can read off the minimum and maximum readings (since the last voltage supply or reset of the min./max. values).

Testing functionality of analog outputs

This function affects the analog outputs directly, not only the test contacts.

1. In Measuring Mode, press SET, select **Main menu analysis** using ▶ or ▲ and confirm selection using SET.

 Test Analog Output is shown. Any analog output value can be predefined, e.g. for an analog output of 4 to 20 mA, the value "6.0 mA".

2. Press SET, choose between **Analog Output 1, 2** with ▶ or ▲.
3. Press SET, scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.
4. Adopt the settings using SET and test with the multimeter at the test contacts below the service flap (minimum requirement: resolution of 6.5 digits, accuracy of 100 nA):
5 Return to Test Analog Output using ESC and continue to Test Relaisausgang using ▶ or ▲.

➢ Testing functionality of relay outputs
1 Press SET, choose between Alarm 1, 2, 3, 4 with ▶ or ▲.
2 Press SET.
 The relay can now be tested. You can choose between OFF and ON using ▶ or ▲. If ON is chosen, the NO contact is closed, the NC contact opened. If OFF is chosen, the NC contact is closed, the NO contact opened.
3 To test, route a measuring cable from the relay terminals (see chapter 1.3.2.3, page 25) out of the transmitter to a multimeter (resistance measurement) or continuity tester.
4 Go back to Test Relay Output by pressing either SET (starts relay test) or ESC (exits the menu without relay test).

➢ Reading off min./max. values of channels
 To reset the max./min. values, see chapter 1.4.6.9, Editing Reset main menu, page 52.

1 Read off the min./max. values of the two channels in succession by pressing ▶ or ▲ and return to Main Menu Analysis using ESC.
2 Continue to Main Menu Message using ▶ or ▲ or return to Measuring Mode by pressing ESC.
1.4.6.6 Editing Message main menu
The last messages can be called up and the display of the messages can be switched on or off.

Using the P2A software (see volume 2, chapter 3.3.2, page 95) you can predefine which of the messages are to be shown in the display.

1. In Measuring Mode, press SET, select Main Menu Message using ▶ or ▲ and confirm selection with SET.
2. Confirm Confirm message using SET.
3. Select Last messages using ▶ or ▲ and confirm with SET.
4. Scroll between the messages recorded so far using ▶ or ▲ and press ESC to return to Last messages.
5. Continue to Display of message with ▶ or ▲.
 - **ON**: Measurements are shown on the display in Measuring Mode.
 - **OFF**: No messages shown on display.
6. Select ON or OFF using ▶ or ▲ and confirm selection with SET.
7. Return to Main Menu Message by pressing ESC.
8. Continue to Main Menu Ident using ▶ or ▲ or return to Measuring Mode by pressing ESC.

An overview of the messages can be found in chapter 1.5, Status, warning and error messages, page 53.
1.4.6.7 Calling up Main Menu Ident

The serial numbers of the transmitter and probe can be read off.

1. In Measuring Mode, press SET, select **Main Menu Ident** using ▶ or ▲ and confirm selection with SET.
 The type, firmware version and serial number of the transmitter are displayed.

2. Press ESC to return to the **Main Menu Ident** or read off the type, firmware version and serial number of the probe using ▶ or ▲ and then press ▶ or ▲ to return to the **Main Menu Ident**.

3. Continue to **Main Menu Adjustment** using ▶ or ▲ or return to Measuring Mode by pressing ESC.

1.4.6.8 Editing Adjust main menu

A reference value can be entered for both relative humidity (% RH) and temperature (°C/°F) for the 1-point adjustment. Please refer to the description in Chapter 1.3.3.2, 1-point adjustment (offset), page 32.

In addition, the analog outputs can be adjusted. See Chapter 1.3.3.4, Analog output adjustment, page 36 how to do this.

The 2-point adjustment for the adjustment points 20 %RH and 80 %RH is carried out via the user menu.

For the adjustment points 11.3 %RH and 75.3 %RH, the 2-point adjustment is carried out via the adjustment buttons or the P2A software (see chapter 1.3.3.3, page 34 or volume 2, chapter 3.3.2, page 95).
➤ Enter reference value for 1-point adjustment

Please also refer to chapter 1.3.3.2, 1-point adjustment (offset), page 32.

1 In Measuring Mode, press SET, select **Main Menu Adjust** using ▶ or ▲ and confirm selection with SET.

 Reference value % RH is displayed.

2 Press SET, edit value: Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or cancel entry with ESC.

3 Continue to **Reference value temp** with ▶ or ▲.

4 Press SET and **Reference value °C** is displayed.

5 Press SET, edit value: Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

6 Continue to **Reference value °F** with ▶ or ▲.

7 Press SET, edit value: Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

8 Continue to **Analog Adj. Ch. 1** with ▶ or ▲.

9 Continue with the adjustment of the analog outputs (see below, step 2) or press ESC to return to **Main Menu Adjustment**.

10 Continue to **Main Menu Reset** using ▶ or ▲ or return to Measuring Mode by pressing ESC.

➤ Performing the 2-Points-Adjustment for 20% RH and 80 % RH

1 In the Measuring Mode press SET, select **main menu Adjust** with ▶ or ▲ and confirm selection with SET.

2 Continue to **2Pt Adjust 20/80%** with ▶ or ▲.

3 Press SET.

4 Continue to Adj. Point 20% or Adj. Point 80% with ▶ or ▲

5 Confirm selection with SET.

6 The red LED ADJ flashes

 In the display 2Pt Adjust 20/80%, 1-point adjustment, Probe reset appears consecutively.

 The adjusted measurement values appear after probe reset.
Performing analog adjustment

Please refer to chapter 1.3.3.4, page 36.

1. In Measuring Mode, press SET, select Main Menu Adjust using ▶ or ▲ and confirm selection with SET.

 Each channel is adjusted at three points in the analog range (at 10 %; 50 %; 90% of the analog scale).

2. Select Analog Adj. Ch. 1 using ▶ or ▲ and confirm with SET.

3. Select Adj. Point 1 using ▶ or ▲.

4. Press SET. Read off multimeter display (e.g. 5.601 mA) and enter this value in the user menu. Do this by scrolling one digit to the right using ▶ and increasing the value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

5. Select Adj. Point 2 using ▶ or ▲.

6. Press SET. Read off multimeter display (e.g. 12,001 mA) and enter this value in the user menu. Do this by scrolling one digit to the right using ▶ and increasing the value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

7. Select Adj. Point 3 using ▶ or ▲.

8. Press SET. Read off multimeter display (e.g. 18,401 mA) and enter this value in the user menu. Do this by scrolling one digit to the right using ▶ and increasing the value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

9. Continue to Analog Adj. Ch. 2 with ▶ or ▲ (repeat steps 3 to 8).

10. Return to Main Menu Adjust by pressing ESC.

11. Continue to Main Menu Reset using ▶ or ▲ or return to Measuring Mode by pressing ESC.
1.4.6.9 Editing Reset main menu

You can reset the factory settings for the following:

- Instrument
- Sensor/probe
- Min./max. values

Resetting to the factory settings means resetting to the order specification, i.e. the specific condition at the time of supply to the customer.

1. In Measuring Mode, press SET, select **Main Menu Reset** using ▶ or ▲ and confirm selection with SET.

 Reset device to factory settings is displayed.

2. Select the setting to be reset using ▶ or ▲ and confirm selection with SET.

 Reset Completed is displayed.

3. Press ESC or SET to return to reset setting and press ESC to return to **Main Menu Reset**.

4. Continue to **Main Menu Channel 1** using ▶ or ▲ or return to Measuring Mode by pressing ESC.
1.5 Status, warning and error messages

To achieve optimum operational reliability (machine availability), the transmitter provides the following via the user menu (see chapter 1.4, page 37) or the P2A software (see volume 2, Chapter 3, page 89):

- Status messages,
- Warning messages and
- Error messages

for either the testo 6651 or the connected testo 660x probe as applicable.

All messages are stored in the transmitter with an operating hours stamp. Use the user menu (see Chapter 1.4.6.6, page 48) or P2A software (see volume 2, chapter 3, page 89) to view the message history.

In the transmitter, the last 180 messages are stored in a ring memory, but there is no restriction in the P2A software.

1.5.1 Transmitter status messages

Status messages show the current operating mode of the testo 6651.

<table>
<thead>
<tr>
<th>Message</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00300</td>
<td>New limit value</td>
<td>The limit value has been changed or shifted</td>
</tr>
<tr>
<td>00301</td>
<td>Scaling changed</td>
<td>The scaling has been changed</td>
</tr>
<tr>
<td>00500</td>
<td>Transmitter reset:</td>
<td>The transmitter is reset to the factory settings and is restarted.</td>
</tr>
<tr>
<td>0052F</td>
<td>Reset Min/Max</td>
<td>Resets all saved Min/Max values for all channels</td>
</tr>
<tr>
<td>02506</td>
<td>Probe connection</td>
<td>A probe has been connected</td>
</tr>
<tr>
<td>01D19</td>
<td>Service plug</td>
<td>The Mini-DIN socket is connected to: the USB adapter for P2A software, the adjustment adapter or the service plug (is not recorded/no number)</td>
</tr>
<tr>
<td>00307</td>
<td>User Setting Change</td>
<td>User Setting Change: General settings were changed for the transmitter.</td>
</tr>
<tr>
<td>Message</td>
<td>Display</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>02d07</td>
<td>Probe disconnected</td>
<td>No probe is connected</td>
</tr>
<tr>
<td>02104</td>
<td>Analog out adjust</td>
<td>An analog adjustment has been made</td>
</tr>
<tr>
<td>02101</td>
<td>1-point adjustment</td>
<td>A 1-point adjustment is performed.</td>
</tr>
<tr>
<td>02102</td>
<td>2-point adjustment</td>
<td>As part of the 2-point adjustment, an adjustment is performed at 11.3 % RH</td>
</tr>
<tr>
<td>02103</td>
<td>2-point adjustment</td>
<td>As part of the 2-point adjustment, an adjustment is performed at 75.3 % RH</td>
</tr>
<tr>
<td>02120</td>
<td>2-point adjustment</td>
<td>As part of the 2-point adjustment, an adjustment is performed at 20 % RH</td>
</tr>
<tr>
<td>02130</td>
<td>2-point adjustment</td>
<td>As part of the 2-point adjustment, an adjustment is performed at 80 % RH</td>
</tr>
<tr>
<td>02518</td>
<td>Probe reset</td>
<td>Probe reset: The probe performs a reset</td>
</tr>
</tbody>
</table>

1.5.2 Transmitter warning messages

Warning messages show an early warning or a current malfunction which may negatively impact measuring.

<table>
<thead>
<tr>
<th>Message</th>
<th>Display</th>
<th>Cause</th>
<th>Remedying of fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>02101</td>
<td>2-point adjustment</td>
<td>In the 2-point adjustment, corrections repeatedly occur in the same direction; this may indicate a sensor drift</td>
<td>Send the probe into Testo Service</td>
</tr>
<tr>
<td>00E00</td>
<td>T ambient high**</td>
<td>The ambient temperature exceeds the permissible temperature for the transmitter</td>
<td>Take necessary measures to lower ambient temperature, e.g. through venting or cooling</td>
</tr>
<tr>
<td>00E01</td>
<td>T ambient low**</td>
<td>The ambient temperature is below the permissible temperature for the transmitter</td>
<td>Take necessary measures to raise ambient temperature, e.g. through heating</td>
</tr>
<tr>
<td>00E02</td>
<td>Supply voltage low**</td>
<td>The supply voltage is below the minimum voltage required for the transmitter</td>
<td>Ensure sufficient voltage supply</td>
</tr>
<tr>
<td>Message</td>
<td>Display</td>
<td>Cause</td>
<td>Remedying of fault</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>00E00</td>
<td>T process high**</td>
<td>The process temperature exceeds the temperature designated for the probe</td>
<td>Remove the probe from the process and take any necessary measures to lower the process temperature</td>
</tr>
<tr>
<td>02806</td>
<td>Condensation*</td>
<td>100 % RH has been reached, condensation developing</td>
<td>Take measures to reduce process humidity</td>
</tr>
<tr>
<td>02807</td>
<td>Values less than 0 % RH**</td>
<td>The adjustment or sensor is faulty</td>
<td>Check adjustment (via P2A adjustment history, perform 2-point adjustment where necessary) If the problem persists, contact Testo Service</td>
</tr>
</tbody>
</table>

* Early warning
** Current malfunction
1.5.3 Transmitter error messages

Error messages show a current malfunction.

<table>
<thead>
<tr>
<th>Message</th>
<th>Display</th>
<th>Cause</th>
<th>Remediing of fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>03401</td>
<td>No probe signal</td>
<td>The probe communication is interrupted</td>
<td>Ensure that the probe connector is fully engaged in the transmitter. - If communication still cannot be established, contact Testo Service</td>
</tr>
<tr>
<td>03508</td>
<td>Wrong probe</td>
<td>The connected probe is not compatible with the present transmitter</td>
<td>Use a compatible probe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: The 660x probes match the 665x transmitter, and the 661x probes the 668x transmitter</td>
</tr>
<tr>
<td>01528</td>
<td>Watchdog error</td>
<td>Due to a processor error, the transmitter performs an automatic restart</td>
<td>If the problem occurs frequently, contact Testo Service</td>
</tr>
<tr>
<td>0300A</td>
<td>% RH sensor short-circuit</td>
<td>Short-circuit in humidity sensor</td>
<td>Contact Testo Service</td>
</tr>
<tr>
<td>0300B</td>
<td>%RH sensor broken</td>
<td>The humidity sensor is damaged (sensor broken)</td>
<td>Contact Testo Service</td>
</tr>
<tr>
<td>0300C</td>
<td>T sensor short-circuit</td>
<td>Short-circuit in temperature sensor</td>
<td>Contact Testo Service</td>
</tr>
<tr>
<td>0300D</td>
<td>T sensor broken</td>
<td>The temperature sensor is damaged (sensor broken)</td>
<td>Contact Testo Service</td>
</tr>
</tbody>
</table>
1.5.4 Handling alarm messages

<table>
<thead>
<tr>
<th>Shown on the display</th>
<th>Can be used for collective alarm</th>
<th>Message start/end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit value</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Scaling changed</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Transmitter reset</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Reset Min/Max</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Transmitter refresh</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Probe connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service plug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Setting Change</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Probe disconnected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog out adjust</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1-point adjustment:</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2-point adjustment 11,3%</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-point adjustment 75.3%</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Probe reset</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2-point adjustment drift*</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>T ambient high**</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>T ambient low**</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Supply voltage low**</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>T process high**</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Condensation*:</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Values less than 0 % RH**</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>No probe signal</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Wrong probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watchdog error</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>% RH sensor short-circuit</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>%RH sensor broken</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>T sensor short-circuit</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>T sensor broken</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
1 If multiple messages/alarms are activated at the same time, only the last message/alarm is shown. If this is cancelled, the other messages that are still active are no longer displayed.

2 The message can be assigned the collective alarm function, which means that the collective alarm is activated as soon as at least one of the messages assigned to it is activated. The collective alarm can be assigned to each of the 4 optional relays. The collective alarm is then always the same, as it can only be defined once.

Execute Confirm message function (via control keys at transmitter):

- The message/alarm is no longer shown on the display. If multiple messages/alarms are active at the same time, all are reset simultaneously.
- If at least one message is assigned to the collective alarm, the collective alarm is reset. If the collective alarm is set on a relay, the relay is also reset, meaning switched to its neutral position.

1.5.5 Namur fault conditions

If the faults named in the following table occur, the analog outputs output special values that enable a general fault warning in the higher-level control system. The values correspond to the "Namur" industry standard.

<table>
<thead>
<tr>
<th>Display message</th>
<th>Class</th>
<th>0-20mA</th>
<th>4-20mA</th>
<th>1V</th>
<th>5V</th>
<th>10V</th>
</tr>
</thead>
<tbody>
<tr>
<td>No probe signal</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>Wrong probe</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>Watchdog error</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>Values < 0 %RH</td>
<td>Underrange</td>
<td>0mA</td>
<td>3.8mA</td>
<td>0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td>Condensation</td>
<td>Overrange</td>
<td>20.5mA</td>
<td>20.5mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>%RH short-circuit</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>%RH sensor broken</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>T short-circuit</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>T sensor broken</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>Probe disconnected</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
</tbody>
</table>
1.6 Maintenance and cleaning

1.6.1 Maintaining the instrument

We recommend that the adjustment and settings of the transmitter be checked at regular intervals using the

- User menu (see chapter 1.4, page 37) or
- P2A software (see volume 2, chapter 3, page 89)

Convenient "remote monitoring" of the transmitter can be implemented, for example by using a relay as a collective alarm (see chapter 1.4.6.3, page 43) whose messages are forwarded to a local alarm transmitter (horn, light) or PLC.

1.6.2 Cleaning the instrument

- Only clean the instrument carefully with a moist cloth.
- Do not use aggressive cleaning agents.
- Do not use any solvents.
- Do not touch or damage the sensor
testo AG
Postfach 1140, 79849 Lenzkirch
Testo-Strasse 1, 79853 Lenzkirch
GERMANY
Phone: +49 (0) 7653 681-0
Fax: +49 (0) 7653 681-100
Internet: www.testo.com
email : info@testo.com